
 
WMO 

INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE 
UNEP 

 

 
IPCC Secretariat,   c/o WMO,   7bis, Avenue de la Paix,   C.P. N° 2300,   1211 Geneva 2,   SWITZERLAND 

Phone: +41 22 730 8208/8254/8284      Fax: +41 22 730 8025/8013 
E-mail: IPCC-Sec@wmo.int        Website: http://www.ipcc.ch 

 
 
 

Climate Change 2007: The Physical Science Basis 
 
 
 
 

Summary for Policymakers 
 
 
 
 
 

 
Contribution of Working Group I to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change 
 
 
 

 
This Summary for Policymakers was formally approved at the 10th Session 

of Working Group I of the IPCC, Paris, February 2007. 
 

Note: 
Text, tables and figures given here are final but subject to checking and 

copy-editing and editorial adjustments to figures. 
 
 
 
 
 
Drafting Authors:  
Richard Alley, Terje Berntsen, Nathaniel L. Bindoff, Zhenlin Chen, Amnat Chidthaisong, Pierre Friedlingstein, Jonathan 
Gregory, Gabriele Hegerl, Martin Heimann, Bruce Hewitson, Brian Hoskins, Fortunat Joos, Jean Jouzel, Vladimir Kattsov, 
Ulrike Lohmann, Martin Manning, Taroh Matsuno, Mario Molina, Neville Nicholls, Jonathan Overpeck, Dahe Qin, Graciela 
Raga, Venkatachalam Ramaswamy, Jiawen Ren, Matilde Rusticucci, Susan Solomon, Richard Somerville, Thomas F. Stocker, 
Peter Stott, Ronald J. Stouffer, Penny Whetton, Richard A. Wood, David Wratt 
 
Draft Contributing Authors:  
Julie Arblaster, Guy Brasseur, Jens Hesselbjerg Christensen, Kenneth Denman, David W. Fahey, Piers Forster, Eystein Jansen, 
Philip D. Jones, Reto Knutti, Hervé Le Treut, Peter Lemke, Gerald Meehl, Philip Mote, David Randall, Daíthí A. Stone, Kevin 
E. Trenberth, Jürgen Willebrand, Francis Zwiers  
 

 
 



Summary for Policymakers  IPCC WGI Fourth Assessment Report 

 

 

 
Page 2 of 21 

INTRODUCTION 

The Working Group I contribution to the IPCC Fourth Assessment Report describes progress in 
understanding of the human and natural drivers of climate change1, observed climate change, climate 
processes and attribution, and estimates of projected future climate change. It builds upon past IPCC 
assessments and incorporates new findings from the past six years of research. Scientific progress since the 
TAR is based upon large amounts of new and more comprehensive data, more sophisticated analyses of 
data, improvements in understanding of processes and their simulation in models, and more extensive 
exploration of uncertainty ranges. 

The basis for substantive paragraphs in this Summary for Policymakers can be found in the chapter 
sections specified in curly brackets.  

HUMAN AND NATURAL DRIVERS OF CLIMATE CHANGE 

Changes in the atmospheric abundance of greenhouse gases and aerosols, in solar radiation and in land 
surface properties alter the energy balance of the climate system.  These changes are expressed in terms of  
radiative forcing2, which is used to compare how a range of human and natural factors drive warming or 
cooling influences on global climate. Since the Third Assessment Report (TAR), new observations and 
related modelling of greenhouse gases, solar activity, land surface properties and some aspects of aerosols 
have led to improvements in the quantitative  estimates of radiative forcing. 

Global atmospheric concentrations of carbon dioxide, methane and nitrous oxide have increased 
markedly as a result of human activities since 1750 and now far exceed pre-industrial values 
determined from ice cores spanning many thousands of years (see Figure SPM-1).   The global 
increases in carbon dioxide concentration are due primarily to fossil fuel use and land-use change, 
while those of methane and nitrous oxide are primarily due to agriculture. {2.3, 6.4, 7.3}  

• Carbon dioxide is the most important anthropogenic greenhouse gas (see Figure SPM-2). The global 
atmospheric concentration of carbon dioxide has increased from a pre-industrial value of about 280 ppm to  
379 ppm3 in 2005. The atmospheric concentration of carbon dioxide in 2005 exceeds by far the natural 
range over the last 650,000 years (180 to 300 ppm) as determined from ice cores. The annual carbon 
dioxide concentration growth-rate was larger during the last 10 years (1995 – 2005 average: 1.9 ppm per 
year), than it has been since the beginning of  continuous direct atmospheric measurements  (1960–2005 
average: 1.4 ppm per year) although there is year-to-year variability in growth rates.  

• The primary source of the increased atmospheric concentration of carbon dioxide since the pre-industrial 
period results from fossil fuel use, with land use change providing another significant but smaller 
contribution. Annual fossil carbon dioxide emissions4 increased from an average of 6.4 [6.0 to 6.8] 5 GtC 

                                                        
1 Climate change in IPCC usage refers to any change in climate over time, whether due to natural variability or as a result of human activity. This usage differs 
from that in the Framework Convention on Climate Change, where climate change refers to a change of climate that is attributed directly or indirectly to human 
activity that alters the composition of the global atmosphere and that is in addition to natural climate variability observed over comparable time periods. 
 
2 Radiative forcing is a measure of the influence that a factor has in altering the balance of incoming and outgoing energy in the Earth-atmosphere system and is 
an index of the importance of the factor as a potential climate change mechanism. Positive forcing tends to warm the surface while negative forcing tends to cool 
it.  In this report radiative forcing values are for 2005 relative to pre-industrial conditions defined at 1750 and are expressed in watts per square metre (W m-2). 
See Glossary and Section 2.2 for further details. 
 
3 ppm (parts per million) or ppb (parts per billion, 1 billion = 1,000 million) is the ratio of the number of greenhouse gas molecules to the total number of 
molecules of dry air.  For example:  300 ppm means 300 molecules of a greenhouse gas per million molecules of dry air. 
 
4 Fossil carbon dioxide emissions include those from the production, distribution and consumption of fossil fuels and as by-product from cement production.  An 
emission of 1 GtC corresponds to 3.67 GtCO2. 
 
5 In general, uncertainty ranges for results given in this Summary for Policymakers are 90% uncertainty intervals unless stated otherwise, i.e., there is an 
estimated 5% likelihood that the value could be above the range given in square brackets and 5% likelihood that the value could be below that range. Best 
estimates are given where available. Assessed uncertainty intervals are not always symmetric about the corresponding best estimate. Note that a number of 
uncertainty ranges in the Working Group I TAR corresponded to 2-sigma (95%), often using expert judgement. 
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(23.5 [22.0 to 25.0] GtCO2) per year in the 1990s, to 7.2 [6.9 to 7.5] GtC (26.4 [25.3 to 27.5] GtCO2) per 
year in 2000–2005 (2004 and 2005 data are interim estimates). Carbon dioxide emissions associated with 
land-use change are estimated to be 1.6 [0.5 to 2.7] GtC (5.9 [1.8 to 9.9] GtCO2) per year over the 1990s, 
although these estimates have a large uncertainty. {2.3, 7.3} 

• The global atmospheric concentration of methane has increased from a pre-industrial value of about 715 
ppb to 1732 ppb in the early 1990s, and is 1774 ppb in 2005. The atmospheric concentration of methane in 
2005 exceeds by far the natural range of the last 650,000 years (320 to 790 ppb) as determined from ice 
cores. Growth rates have declined since the early 1990s, consistent with total emissions (sum of 
anthropogenic and natural sources) being nearly constant during this period. It is very likely6 that the 
observed increase in methane concentration is due to anthropogenic activities, predominantly agriculture 
and fossil fuel use, but relative contributions from different source types are not well determined. {2.3, 7.4}  

• The global atmospheric nitrous oxide concentration increased from a pre-industrial value of about 270 ppb 
to 319 ppb in 2005. The growth rate has been approximately constant since 1980. More than a third of all 
nitrous oxide emissions are anthropogenic and are primarily due to agriculture. {2.3,7.4} 

The understanding of anthropogenic warming and cooling influences on climate has improved since 
the Third Assessment Report (TAR), leading to very high confidence7 that the globally averaged net 
effect of human activities since 1750 has been one of warming, with a radiative forcing of +1.6 [+0.6 
to +2.4] W m-2. (see Figure SPM-2). {2.3. 6.5, 2.9} 

• The combined radiative forcing due to increases in carbon dioxide, methane, and nitrous oxide is +2.30 
[+2.07 to +2.53] W m-2, and its rate of increase during the industrial era is very likely to have been 
unprecedented in more than 10,000 years (see Figures SPM-1 and SPM-2). The carbon dioxide radiative 
forcing increased by 20% from 1995 to 2005, the largest change for any decade in at least the last 200 
years.  {2.3, 6.4}  

• Anthropogenic contributions to aerosols (primarily sulphate, organic carbon, black carbon, nitrate and dust) 
together produce a cooling effect, with a total direct radiative forcing of -0.5 [-0.9 to -0.1] W m-2 and an 
indirect cloud albedo forcing of -0.7 [-1.8 to -0.3] W m-2. These forcings are now better understood than at 
the time of the TAR due to improved in situ, satellite and ground-based measurements and more 
comprehensive modelling, but remain the dominant uncertainty in radiative forcing. Aerosols also influence 
cloud lifetime and precipitation. {2.4, 2.9, 7.5} 

• Significant anthropogenic contributions to radiative forcing come from several other sources. Tropospheric 
ozone changes due to emissions of ozone-forming chemicals (nitrogen oxides, carbon monoxide, and 
hydrocarbons) contribute +0.35 [+0.25 to +0.65] W m-2. The direct radiative forcing due to changes in 
halocarbons8 is +0.34 [+0.31 to +0.37] W m-2. Changes in surface albedo, due to land-cover changes and 
deposition of black carbon aerosols on snow, exert respective forcings of -0.2 [-0.4 to 0.0] and +0.1 [0.0 to 
+0.2] W m-2. Additional terms smaller than +0.1 W m-2 are shown in Figure SPM-2. {2.3, 2.5, 7.2} 

• Changes in solar irradiance since 1750 are estimated to cause a radiative forcing of +0.12 [+0.06 to +0.30] 
W m-2, which is less than half the estimate given in the TAR.  {2.7} 

                                                                                                                                                                                                     
 
6 In this Summary for Policymakers, the following terms have been used to indicate the assessed likelihood, using expert judgement, of an outcome or a result: 
Virtually certain > 99% probability of occurrence, Extremely likely > 95%, Very likely > 90%, Likely > 66%, More likely than not > 50%, Unlikely < 33%, Very 
unlikely < 10%, Extremely unlikely < 5%. (See Box TS 1.1 for more details).  
 
7 In this Summary for Policymakers the following levels of confidence have been used to express expert judgments on the correctness of the underlying science: 
very high confidence at least a 9 out of 10 chance of being correct; high confidence about an 8 out of 10 chance of being correct.  (See Box TS-1.1) 
 
8 Halocarbon radiative forcing has been recently assessed in detail in IPCC’s Special Report on Safeguarding the Ozone Layer and the Global Climate System 
(2005). 
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DIRECT OBSERVATIONS OF RECENT CLIMATE CHANGE  

Since the TAR, progress in understanding how climate is changing in space and in time has been gained 
through improvements and extensions of numerous datasets and data analyses, broader geographical 
coverage, better understanding of uncertainties, and a wider variety of measurements. Increasingly 
comprehensive observations are available for glaciers and snow cover since the 1960s, and for sea level 
and ice sheets since about the past decade. However, data coverage remains limited in some regions.  

Warming of the climate system is unequivocal, as is now evident from observations of increases in 
global average air and ocean temperatures, widespread melting of snow and ice, and rising global 
mean sea level (see Figure SPM-3). {3.2, 4.2, 5.5} 

• Eleven of the last twelve years (1995 -2006) rank among the 12 warmest years in the instrumental record of 
global surface temperature9 (since 1850). The updated 100-year linear trend (1906–2005) of 0.74 [0.56 to 
0.92]°C is therefore larger than the corresponding trend for 1901-2000 given in the TAR of 0.6 [0.4 to 
0.8]°C. The linear warming trend over the last 50 years (0.13 [0.10 to 0.16]°C per decade) is nearly twice 
that for the last 100 years. The total temperature increase from 1850 – 1899 to 2001 – 2005 is 0.76 [0.57 to 
0.95]°C. Urban heat island effects are real but local, and have a negligible influence (less than 0.006°C per 
decade over land and zero over the oceans) on these values. {3.2}  

• New analyses of balloon-borne and satellite measurements of lower- and mid-tropospheric temperature 
show warming rates that are similar to those of the surface temperature record and are consistent within 
their respective uncertainties, largely reconciling a discrepancy noted in the TAR. {3.2, 3.4}  

• The average atmospheric water vapour content has increased since at least the 1980s over land and ocean as 
well as in the upper troposphere. The increase is broadly consistent with the extra water vapour that warmer 
air can hold. {3.4}  

• Observations since 1961 show that the average temperature of the global ocean has increased to depths of at 
least 3000 m and that the ocean has been absorbing more than 80% of the heat added to the climate system. 
Such warming causes seawater to expand, contributing to sea level rise (Table SPM-0).{5.2, 5.5}  

 

 
 
 

                                                        
9 The average of near surface air temperature over land, and sea surface temperature. 
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Table SPM-0. Observed rate of sea level rise and estimated contributions from different sources. {5.5, Table 5.3} 
[Numbers to be converted to mm per year] 

 
 Rate of sea level rise (m per century) 

Source of sea level rise 1961 – 2003 1993 – 2003 

Thermal expansion 0.042 ± 0.012 0.16 ± 0.05 

Glaciers and ice caps 0.050 ± 0.018 0.077 ± 0.022 

Greenland ice sheets 0.05 ± 0.12 0.21 ± 0.07 

Antarctic ice sheets 0.14 ± 0.41 0.21 ± 0.35 

Sum of individual climate  
contributions to sea level rise 0.11 ± 0.05 0.28 ± 0.07 

Observed total sea level rise 0.18 ± 0.05a 0.31 ± 0.07a 

Difference  
(Observed minus sum of estimated 

climate contributions) 
0.07 ± 0.07 0.03 ± 0.10 

 
Note: 
a Data prior to 1993 are from tide gauges and after 1993 are from satellite altimetry 
 
 

• Mountain glaciers and snow cover have declined on average in both hemispheres. Widespread decreases in 
glaciers and ice caps have contributed to sea level rise (ice caps do not include contributions from the 
Greenland and Antarctic ice sheets). (see Table SPM-0)  {4.6, 4.7, 4.8, 5.5}  

• New data since the TAR now show that losses from the ice sheets of Greenland and Antarctica have very 
likely contributed to sea level rise over 1993 to 2003 (Table SPM-0). Flow speed has increased for some 
Greenland and Antarctic outlet glaciers, which drain ice from the interior of the ice sheets. The 
corresponding increased ice sheet mass loss has often followed thinning, reduction or loss of ice shelves or 
loss of floating glacier tongues. Such dynamical ice loss is sufficient to explain most of the Antarctic net 
mass loss and approximately half of the Greenland net mass loss. The remainder of the ice loss from 
Greenland has occurred because losses due to melting have exceeded accumulation due to snowfall. {4.6, 
4.8, 5.5} 

• Global average sea level rose at an average rate of 1.8 [1.3 to 2.3] mm per year over 1961 to 2003. The rate 
was faster over 1993 to 2003, about 3.1 [2.4 to 3.8] mm per year. Whether the faster rate for 1993 to 2003 
reflects decadal variability or an increase in the longer-term trend is unclear. There is high confidence that 
the rate of observed sea level rise increased from the 19th to the 20th century. The total 20th century rise is 
estimated to be 0.17 [0.12 to 0.22] m. {5.5}   

• For 1993-2003, the sum of the climate contributions is  consistent within uncertainties with the total sea 
level rise that is directly observed (see Table SPM-0). These estimates are based on improved satellite and 
in-situ data now available. For the period of 1961 to 2003, the sum of climate contributions is estimated to 
be smaller than the observed sea level rise. The TAR reported a similar discrepancy for 1910 to 1990. {5.5} 

At continental, regional, and ocean basin scales, numerous long-term changes in climate have been 
observed. These include changes in Arctic temperatures and ice, widespread changes in precipitation 
amounts, ocean salinity, wind patterns and aspects of extreme weather including droughts, heavy 
precipitation, heat waves and the intensity of tropical cyclones10. {3.2, 3.3, 3.4, 3.5, 3.6, 5.2} 

                                                        
10 Tropical cyclones include hurricanes and typhoons. 
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• Average Arctic temperatures increased at almost twice the global average rate in the past 100 years. Arctic 
temperatures have high decadal variability, and a warm period was also observed from 1925 to 1945. {3.2}  

• Satellite data since 1978 show that annual average Arctic sea ice extent has shrunk by 2.7 [2.1 to 3.3]% per 
decade, with larger decreases in summer of 7.4 [5.0 to 9.8]% per decade. These values are consistent with 
those reported in the TAR. {4.4}  

• Temperatures at the top of the permafrost layer have generally increased since the 1980s in the Arctic (by 
up to 3°C). The maximum area covered by seasonally frozen ground has decreased by about 7% in the 
Northern Hemisphere since 1900, with a decrease in spring of up to 15%. {4.7}  

• Long-term trends from 1900 to 2005 have been observed in precipitation amount over many large 
regions.11 Significantly increased precipitation has been observed in eastern parts of North and South 
America, northern Europe and northern and central Asia. Drying has been observed in the Sahel, the 
Mediterranean, southern Africa and parts of southern Asia. Precipitation is highly variable spatially and 
temporally, and data are limited in some regions. Long-term trends have not been observed for the other 
large regions assessed.11 {3.3, 3.9}   

• Changes in precipitation and evaporation over the oceans are suggested by freshening of mid and high 
latitude waters together with increased salinity in low latitude waters. {5.2} 

• Mid-latitude westerly winds have strengthened in both hemispheres since the 1960s. {3.5} 

• More intense and longer droughts have been observed over wider areas since the 1970s, particularly in the 
tropics and subtropics. Increased drying linked with higher  temperatures and decreased precipitation have 
contributed to changes in drought. Changes in sea surface temperatures (SST),  wind patterns, and 
decreased snowpack and snow cover have also been linked to droughts. {3.3}  

• The frequency of heavy precipitation events has increased over most land areas, consistent with warming 
and observed increases of atmospheric water vapour. {3.8, 3.9}  

• Widespread changes in extreme temperatures have been observed over the last 50 years. Cold days, cold 
nights and frost have become less frequent, while hot days, hot nights, and heat waves have become more 
frequent (see Table SPM-1). {3.8}  

• There is observational evidence for an increase of intense tropical cyclone activity in the North Atlantic 
since about 1970, correlated with increases of tropical sea surface temperatures. There are also suggestions 
of increased intense tropical cyclone activity in some other regions where concerns over data quality are 
greater. Multi-decadal variability and the quality of the tropical cyclone records prior to routine satellite 
observations in about 1970 complicate the detection of long-term trends in tropical cyclone activity. There 
is no clear trend in the annual numbers of tropical cyclones. {3.8} 

Some aspects of climate have not been observed to change. {3.2, 3.8, 4.4, 5.3} 

• A decrease in diurnal temperature range (DTR) was reported in the TAR, but the data available then 
extended only from 1950 to 1993. Updated observations reveal that DTR has not changed from 1979 to 
2004 as both day- and night-time temperature have risen at about the same rate. The trends are highly 
variable from one region to another. {3.2}  

• Antarctic sea ice extent continues to show inter-annual variability and localized changes but no statistically 
significant average trends, consistent with the lack of warming reflected in atmospheric temperatures 
averaged across the region. {3.2, 4.4}  

• There is insufficient evidence to determine whether trends exist in the meridional overturning circulation of 
the global ocean or in small scale phenomena such as tornadoes, hail, lightning and dust-storms. {3.8, 5.3}  

 
 
                                                        
11 The assessed regions are those considered in the regional projections Chapter of the TAR and in Chapter 11 of this Report. 
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Table SPM-1. Recent trends, assessment of human influence on the trend, and projections for extreme weather events for 
which there is an observed late 20th century trend. {Tables 3.7, 3.8, 9.4, Sections 3.8, 5.5, 9.7, 11.2-11.9} 

 

 Phenomenona and direction 
of trend 

Likelihood that trend 
occurred in late 20th 

century (typically post 
1960) 

Likelihood of a human  
contribution to observed 

trend b 

Likelihood of future 
trends based on 

projections for 21st 
century using SRES 

scenarios 

Warmer and fewer cold days 
and nights over most land 
areas 

Very likely c Likely e Virtually certain e 

Warmer and more frequent 
hot days and nights over 
most land areas 

Very likely d Likely (nights) e Virtually certain e 

Warm spells / heat waves. 
Frequency increases over 
most land areas 

Likely More likely than not f Very likely 

Heavy precipitation events. 
Frequency (or proportion of 
total rainfall from heavy falls) 
increases over most areas 

Likely More likely than not f Very likely 

Area affected by droughts 
increases 

Likely in many regions 
since 1970s More likely than not Likely 

Intense tropical cyclone 
activity increases 

Likely in some regions 
since 1970 More likely than not f Likely 

Increased incidence of 
extreme high sea level 
(excludes tsunamis) g 

Likely More likely than not f, h Likely i 

 
Notes:  
(a) See Table 3.7 for further details regarding definitions 
(b) See Table TS-4, Box TS-3.4 and Table 9.4. 
(c) Decreased frequency of cold days and nights (coldest 10%) 
(d) Increased frequency of hot days and nights (hottest 10%) 
(e) Warming of the most extreme days and nights each year 
(f)  Magnitude of anthropogenic contributions not assessed. Attribution for these phenomena based on expert judgement rather than formal 
attribution studies.  
(g)  Extreme high sea level depends on mean sea level and on regional weather systems. It is defined here as the highest 1% of hourly values of 
observed sea level at a station for a given reference period.  
(h)  Changes in observed extreme high sea level closely follow the changes in mean sea level {5.5.2.6}. It is very likely that anthropogenic activity 
contributed to a rise in mean sea level. {9.5.2}  
(i)  In all scenarios, the projected global mean sea level at 2100 is higher than in the reference period. {10.6}. The effect of changes in regional 
weather systems on sea level extremes has not been assessed. 
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A PALEOCLIMATIC PERSPECTIVE 

Paleoclimatic studies use changes in climatically sensitive indicators to infer past changes in global climate 
on time scales ranging from decades to millions of years. Such proxy data (e.g., tree ring width) may be 
influenced by both local temperature and other factors such as precipitation, and are often representative of 
particular seasons rather than full years. Studies since the TAR draw increased confidence from additional 
data showing coherent behaviour across multiple indicators in different parts of the world. However, 
uncertainties generally increase with time into the past due to increasingly limited spatial coverage.  

Paleoclimate information supports the interpretation that the warmth of the last half century is 
unusual in at least the previous 1300 years. The last time the polar regions were significantly warmer 
than present for an extended period (about 125,000 years ago), reductions in polar ice volume led to 
4 to 6 metres of sea level rise. {6.4, 6.6} 

• Average Northern Hemisphere temperatures during the second half of the 20th century were very likely 
higher than during any other 50-year period in the last 500 years and likely the highest in at least the past 
1300 years. Some recent studies indicate greater variability in Northern Hemisphere temperatures than 
suggested in the TAR, particularly finding that cooler periods existed in the 12 to 14th, 17th, and 19th 
centuries. Warmer periods prior to the 20th century are within the uncertainty range given in the TAR. {6.6}  

• Global average sea level in the last interglacial period (about 125,000 years ago) was likely 4 to 6 m higher 
than during the 20th century, mainly due to the retreat of polar ice. Ice core data indicate that average polar 
temperatures at that time were 3 to 5°C higher than present, because of differences in the Earth’s orbit. The 
Greenland ice sheet and other Arctic ice fields likely contributed no more than 4 m of the observed sea level 
rise. There may also have been a contribution from Antarctica. {6.4}  

UNDERSTANDING AND ATTRIBUTING CLIMATE CHANGE 

This Assessment considers longer and improved records, an expanded range of observations, and 
improvements in the simulation of many aspects of climate and its variability based on studies since the 
TAR. It also considers the results of new attribution studies that have evaluated whether observed changes 
are quantitatively consistent with the expected response to external forcings and inconsistent with 
alternative physically plausible explanations. 

Most of the observed increase in globally averaged temperatures since the mid-20th century  is very 
likely due to the observed increase in anthropogenic greenhouse gas concentrations12. This is an 
advance since the TAR’s conclusion that “most of the observed warming over the last 50 years is 
likely to have been due to the increase in greenhouse gas concentrations”. Discernible human 
influences now extend to other aspects of climate, including ocean warming, continental-average 
temperatures, temperature extremes and wind patterns (see Figure SPM-4 and Table SPM-1). {9.4, 
9.5}  

• It is likely that increases in greenhouse gas concentrations alone would have caused more warming than 
observed because volcanic and anthropogenic aerosols have offset some warming that would otherwise 
have taken place. {2.9, 7.5, 9.4} 

• The observed widespread warming of the atmosphere and ocean, together with ice mass loss, support the 
conclusion that it is extremely unlikely that global climate change of the past fifty years can be explained 
without external forcing, and very likely that it is not due to known natural causes alone. {4.8, 5.2, 9.4, 9.5, 
9.7}  

                                                        
12 Consideration of remaining uncertainty is based on current methodologies. 
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• Warming of the climate system has been detected in  changes of surface and atmospheric temperatures, 
temperatures in the upper several hundred metres of the ocean and in contributions to sea level rise. 
Attribution studies have established anthropogenic contributions to all of these changes. The observed 
pattern of tropospheric warming and stratospheric cooling  is very likely due to the combined influences of 
greenhouse gas increases and stratospheric ozone depletion. {3.2, 3.4, 9.4, 9.5}  

• It is likely that there has been significant anthropogenic warming over the past 50 years averaged over each 
continent except Antarctica (see Figure SPM-4). The observed patterns of warming, including greater 
warming over land than over the ocean, and their changes over time, are only simulated by models that 
include anthropogenic forcing. The ability of coupled climate models to simulate the observed temperature 
evolution on each of six continents provides stronger evidence of human influence on climate than was 
available in the TAR. {3.2, 9.4} 

• Difficulties remain in reliably simulating and attributing observed temperature changes at smaller scales. 
On these scales, natural climate variability is relatively larger making it harder to distinguish changes 
expected due to external forcings.  Uncertainties in local forcings and feedbacks also make it difficult to 
estimate the contribution of greenhouse gas increases to observed small-scale temperature changes. {8.3, 
9.4}  

• Anthropogenic forcing is likely to have contributed to changes in wind patterns13, affecting extra-tropical 
storm tracks and temperature patterns in both hemispheres. However, the observed changes in the Northern 
Hemisphere circulation are larger than simulated in response to 20th century forcing change. {3.5, 3.6, 9.5, 
10.3}  

• Temperatures of the most extreme hot nights, cold nights and cold days are likely to have increased due to 
anthropogenic forcing. It is more likely than not that anthropogenic forcing has increased the risk of heat 
waves (see Table SPM-1). {9.4}  

Analysis of climate models together with constraints from observations enables an assessed likely 
range to be given for climate sensitivity for the first time and provides increased confidence in the 
understanding of the climate system response to radiative forcing. {6.6, 8.6, 9.6. Box 10.2} 

• The equilibrium climate sensitivity is a measure of the climate system response to sustained radiative 
forcing. It is not a projection but is defined as the global average surface warming following a doubling of 
carbon dioxide concentrations.  It is likely to be in the range 2 to 4.5°C with a best estimate of about 3°C, 
and is very unlikely to be less than 1.5°C. Values substantially higher than 4.5°C cannot be excluded, but 
agreement of models with observations is not as good for those values. Water vapour changes represent the 
largest feedback affecting climate sensitivity and are now better understood than in the TAR. Cloud 
feedbacks remain the largest source of uncertainty. {8.6, 9.6, Box 10.2}  

• It is very unlikely that climate changes of at least the seven centuries prior to 1950 were due to variability 
generated within the climate system alone. A significant fraction of the reconstructed Northern Hemisphere 
interdecadal temperature variability over those centuries is very likely attributable to volcanic eruptions and 
changes in solar irradiance, and it is likely that anthropogenic forcing contributed to the early 20th century 
warming evident in these records. {2.7, 2.8, 6.6, 9.3} 

                                                        
13 In particular, the Southern and Northern Annular Modes and related changes in the North Atlantic Oscillation {3.6, 9.5, Box TS.3.1} 
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PROJECTIONS OF FUTURE CHANGES IN CLIMATE 

A major advance of this assessment of climate change projections compared with the TAR is the large 
number of simulations available from a broader range of models. Taken together with additional 
information from observations, these provide a quantitative basis for estimating likelihoods for many 
aspects of future climate change.  Model simulations cover a range of possible futures including idealised 
emission or concentration assumptions. These include SRES14,15 illustrative marker scenarios for the 2000–
2100 period and model experiments with greenhouse gases and aerosol concentrations held constant after 
year 2000 or 2100.  

 
For the next two decades a warming of about 0.2°C per decade is projected for a range of SRES 
emission scenarios. Even if the concentrations of all greenhouse gases and aerosols had been kept 
constant at year 2000 levels, a further warming of about 0.1°C per decade would be expected. {10.3, 
10.7} 

• Since IPCC’s first report in 1990, assessed projections have suggested global averaged temperature 
increases between about 0.15 and 0.3°C per decade for 1990 to 2005. This can now be compared with 
observed values of about 0.2°C per decade, strengthening confidence in near-term projections. {1.2, 3.2}  

• Model experiments show that even if  all radiative forcing agents are held constant at year 2000 levels, a 
further warming  trend would occur in the next two decades at a rate of about 0.1°C per decade, due mainly 
to the slow response of the oceans. About twice as much warming (0.2°C per decade) would be expected if 
emissions are within the range of the SRES scenarios. Best-estimate projections from models indicate that 
decadal-average warming over each inhabited continent by 2030 is insensitive to the choice among SRES 
scenarios and is very likely to be at least twice as large as the corresponding model-estimated natural 
variability during the 20th century. {9.4, 10.3, 10.5, 11.2–11.7, Figure TS-29} 

Continued greenhouse gas emissions at or above current rates would cause further warming and 
induce many changes in the global climate system during the 21st century that would very likely be 
larger than those observed during the 20th century. {10.3} 

• Advances in climate change modelling now enable best estimates and likely assessed uncertainty ranges to 
be given for projected warming for different emission scenarios. Results for different emission scenarios 
are provided explicitly in this report to avoid loss of this policy-relevant information. Projected globally-
averaged surface warmings for the end of the 21st century (2090–2099) relative to 1980–1999 are shown in 
Table SPM-2. These illustrate the differences between lower to higher SRES emission scenarios and the 
projected warming uncertainty associated with these scenarios. {10.5} 

• Best estimates and likely ranges for globally average surface air warming for six SRES emissions marker 
scenarios are given in this assessment and are shown in Table SPM-2. For example, the best estimate for 
the low scenario (B1) is 1.8°C (likely range is 1.1°C to 2.9°C), and the best estimate for the high scenario 
(A1FI) is  4.0°C (likely range is 2.4°C to 6.4°C). Although these projections are broadly consistent with the 
span quoted in the TAR (1.4 to 5.8°C), they are not directly comparable (See Figure A). The AR4 is more 
advanced as it provides best estimates and an assessed likelihood range for each of the marker scenarios.  
The new assessment of the likely ranges now relies on a larger number of climate models of increasing 
complexity and realism, as well as new information regarding the nature of feedbacks from the carbon 
cycle and constraints on climate response from observations.  

                                                        
14 SRES refers to the IPCC Special Report on Emission Scenarios (2000). The SRES scenario families and illustrative cases, which did not include additional 
climate initiatives, are summarized in a box at the end of this Summary for Policymakers. Approximate CO2 equivalent concentrations corresponding to the 
computed radiative forcing due to anthropogenic greenhouse gases and aerosols in 2100 (see p. 823 of the TAR) for the SRES B1, A1T, B2, A1B, A2 and A1FI 
illustrative marker scenarios are about 600, 700, 800, 850, 1250 and 1550 ppm respectively. 
 
15 Scenarios B1, A1B, and A2 have been the focus of model inter-comparison studies and many of those results are assessed in this report. 
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• Warming tends to reduce land and ocean uptake of atmospheric carbon dioxide, increasing the fraction of 
anthropogenic emissions that remains in the atmosphere. For the A2 scenario, for example, the climate-
carbon cycle feedback increases the corresponding global average warming at 2100 by more than 1°C. 
Assessed upper ranges for temperature projections are larger than in the TAR (see Table SPM-2) mainly 
because the broader range of models now available suggests stronger climate-carbon cyclefeed backs.. {7.3, 
10.5}  

 

 
Table SPM-2. Projected globally averaged surface warming and sea level rise at the end of the 21st century for different 
model cases. The sea level projections do not include uncertainties in carbon-cycle feedbacks, because a basis in published 
literature is lacking. {10.5, 10.6, Table 10.7} 
 

 
Temperature Change (°C at 2090-

2099 relative to 1980-1999) a 

Sea Level Rise  
(m at 2090-2099 relative to 1980-

1999)  

Case Best  
estimate 

Likely 
range 

Model-based range 
excluding future rapid dynamical 

changes in ice flow 
Constant Year 

2000  
concentrations c 

0.6 0.3 – 0.9 NA 

B1 scenario 1.8 1.1 – 2.9 0.18 – 0.38 
A1T scenario 2.4 1.4 – 3.8 0.20 – 0.45 
B2 scenario 2.4 1.4 – 3.8 0.20 – 0.43 

A1B scenario 2.8 1.7 – 4.4 0.21 – 0.48 
A2 scenario 3.4 2.0 – 5.4 0.23 – 0.51 

A1FI scenario 4.0 2.4 – 6.4 0.26 – 0.59 
 
Notes: 
a These estimates are assessed from a hierarchy of models that encompass a simple climate model, several EMICs, and a large number of 
AOGCMs. 
c Year 2000 constant composition is derived from AOGCMs only 
 
 
 

• Model-based projections of global average sea level rise at the end of the 21st century (2090-2099) are 
shown in Table SPM-2. For each scenario, the midpoint of the range in Table SPM-2 is within 10% of the 
TAR model average for 2090-2099. The ranges are narrower than in the TAR mainly because of improved 
information about some uncertainties in the projected contributions.16 {10.6} 

• Models used to date do not include uncertainties in climate-carbon cycle feedback nor do they include the 
full effects of changes in ice sheet flow, because a basis in published literature is lacking. The projections 
include a contribution due to increased ice flow from Greenland and Antarctica at the rates observed for 
1993-2003, but these flow rates could increase or decrease in the future.  For example, if this contribution 
were to grow linearly with global average temperature change, the upper ranges of sea level rise for SRES 
scenarios shown in Table SPM-2 would increase by 0.1 m to 0.2 m.   Larger values cannot be excluded, but 
understanding of these effects is too limited to assess their likelihood or provide a best estimate or an upper 
bound for sea level rise. {10.6} 

 

                                                        
16 TAR projections were made for 2100, whereas projections in this Report are for 2090-2099. The TAR would have had similar ranges to those in Table SPM-
2 if it had treated the uncertainties in the same way. 
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• Increasing atmospheric carbon dioxide concentrations lead to increasing acidification of the ocean. 
Projections based on SRES scenarios give reductions in average global surface ocean pH17 of between 0.14 
and 0.35 units over the 21st century, adding to the present decrease of 0.1 units since pre-industrial times. 
{5.4, Box 7.3, 10.4}  

There is now higher confidence in projected patterns of warming and other regional-scale features, 
including changes in  wind patterns, precipitation, and some aspects of extremes and of ice. {8.2, 8.3, 
8.4, 8.5, 9.4, 9.5, 10.3, 11.1} 

• Projected warming in the 21st century shows scenario-independent geographical patterns similar to those 
observed over the past  several decades. Warming is expected to be greatest over land and at most high 
northern latitudes, and least over the Southern Ocean and parts of  the North Atlantic ocean (see Figure 
SPM-5). {10.3}  

• Snow cover is projected to contract. Widespread increases in thaw depth are projected over most 
permafrost regions. {10.3, 10.6}  

• Sea ice is projected to shrink in both the Arctic and Antarctic under all SRES scenarios. In some 
projections, Arctic late-summer sea ice disappears almost entirely by the latter part of the 21st century. 
{10.3}  

• It is very likely that hot extremes, heat waves, and heavy precipitation events will continue to become more 
frequent. {10.3} 

• Based on a range of models, it is likely that future tropical cyclones (typhoons and hurricanes) will become 
more intense, with larger peak wind speeds and more heavy precipitation associated with ongoing increases 
of tropical SSTs. There is less confidence in projections of a global decrease in numbers of tropical 
cyclones. The apparent increase in the proportion of very intense storms since 1970 in some regions is 
much larger than simulated by current models for that period. {9.5, 10.3, 3.8}  

• Extra-tropical storm tracks are projected to move poleward, with consequent changes in wind, precipitation, 
and temperature patterns, continuing the broad pattern of observed trends over the last half-century. {3.6, 
10.3}  

• Since the TAR there is an improving understanding of projected patterns of precipitation. Increases in the 
amount of precipitation are very likely in high-latitudes, while decreases are likely in most subtropical land 
regions (by as much as about 20% in the A1B scenario in 2100, see Figure SPM-6), continuing observed 
patterns in recent trends. {3.3, 8.3, 9.5, 10.3, 11.2 to 11.9}  

• Based on current model simulations, it is very likely that the meridional overturning circulation (MOC) of 
the Atlantic Ocean will slow down during the 21st century. The multi-model average reduction by 2100 is 
25% (range from zero to  about 50%) for SRES emission scenario A1B. Temperatures in the Atlantic 
region are projected to increase despite such changes due to the much larger warming associated with 
projected increases of greenhouse gases. It is very unlikely that the MOC will undergo a large abrupt 
transition during the 21st century. Longer-term changes in the MOC cannot be assessed with confidence. 
{10.3, 10.7}  

Anthropogenic warming and sea level rise would continue for centuries due to the timescales 
associated with climate processes and feedbacks, even if greenhouse gas concentrations were to be 
stabilized. {10.4, 10.5, 10.7}  

• Climate-carbon cycle coupling is expected to add carbon dioxide to the atmosphere as the climate system 
warms, but the magnitude of this feedback is uncertain. This increases the uncertainty in the trajectory of 
carbon dioxide emissions required to achieve a particular stabilisation level of atmospheric  carbon dioxide 
concentration. Based on current understanding of climate carbon cycle feedback, model studies suggest that 

                                                        
17 Decreases in pH correspond to increases in acidity of a solution. See Glossary for further details. 
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to stabilise at 450 ppm carbon dioxide, could require that cumulative emissions over the 21st century be 
reduced from an average of approximately 670 [630 to 710] GtC to approximately 490 [375 to 600] GtC. 
Similarly, to stabilise at 1000 ppm this feedback could require that cumulative emissions be reduced from a 
model average of approximately 1415 [1340 to 1490] GtC to approximately 1100 [980 to 1250] GtC. {7.3, 
10.4} [Add GtCO2 numbers]. 

• If radiative forcing were to be stabilized  in 2100 at B1 or A1B levels11 a further  increase in global mean 
temperature of about 0.5°C would still be expected, mostly by 2200. {10.7} 

• If radiative forcing were to be stabilized in 2100 at A1B levels11, thermal expansion alone would lead to 0.3 
to 0.8 m of sea level rise by 2300 (relative to 1980–1999). Thermal expansion would continue for many 
centuries, due to the time required to transport heat into the deep ocean. {10.7} 

• Contraction of the Greenland ice sheet is projected to continue to contribute to sea level rise after 2100.  
Current models suggest ice mass losses increase with temperature more rapidly than gains due to 
precipitation and that the surface mass balance becomes negative at a global average warming (relative to 
pre-industrial values)  in excess of 1.9 to 4.6°C.  If a negative surface mass balance were sustained for 
millennia, that would lead to virtually complete elimination of the Greenland ice sheet and a resulting 
contribution to sea level rise of about 7 m. The corresponding future temperatures in Greenland are 
comparable to those inferred for the last interglacial period 125,000 years ago, when paleoclimatic 
information suggests reductions of polar land ice extent and 4 to 6 m of sea level rise. {6.4, 10.7}  

• Dynamical processes related to ice flow not included in current models but suggested by recent 
observations could increase the vulnerability of the ice sheets to warming, increasing future sea level rise. 
Understanding of these processes is limited and there is no consensus on their magnitude. {4.6, 10.7} 

• Current global model studies project that the Antarctic ice sheet will remain too cold for widespread surface 
melting and is expected to gain in mass due to increased snowfall. However, net loss of ice mass could 
occur if dynamical ice discharge dominates the ice sheet mass balance. {10.7} 

• Both past and future anthropogenic carbon dioxide emissions will continue to contribute to warming and 
sea level rise for more than a millennium, due to the timescales required for removal of this gas from the 
atmosphere. {7.3, 10.3} 
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The Emission Scenarios of the IPCC Special Report on Emission Scenarios (SRES)18 
 
A1. The A1 storyline and scenario family describes a future world of very rapid economic growth, global population 
that peaks in mid-century and declines thereafter, and the rapid introduction of new and more efficient technologies. 
Major underlying themes are convergence among regions, capacity building and increased cultural and social 
interactions, with a substantial reduction in regional differences in per capita income. The A1 scenario family 
develops into three groups that describe alternative directions of technological change in the energy system. The 
three A1 groups are distinguished by their technological emphasis: fossil intensive (A1FI), non-fossil energy sources 
(A1T), or a balance across all sources (A1B) (where balanced is defined as not relying too heavily on one particular 
energy source, on the assumption that similar improvement rates apply to all energy supply and end use 
technologies). 
 
A2. The A2 storyline and scenario family describes a very heterogeneous world. The underlying theme is self 
reliance and preservation of local identities. Fertility patterns across regions converge very slowly, which results in 
continuously increasing population. Economic development is primarily regionally oriented and per capita economic 
growth and technological change more fragmented and slower than other storylines. 
 
B1. The B1 storyline and scenario family describes a convergent world with the same global population, that peaks 
in mid-century and declines thereafter, as in the A1 storyline, but with rapid change in economic structures toward a 
service and information economy, with reductions in material intensity and the introduction of clean and resource 
efficient technologies. The emphasis is on global solutions to economic, social and environmental sustainability, 
including improved equity, but without additional climate initiatives. 
 
B2. The B2 storyline and scenario family describes a world in which the emphasis is on local solutions to economic, 
social and environmental sustainability. It is a world with continuously increasing global population, at a rate lower 
than A2, intermediate levels of economic development, and less rapid and more diverse technological change than in 
the B1 and A1 storylines. While the scenario is also oriented towards environmental protection and social equity, it 
focuses on local and regional levels. 
 
An illustrative scenario was chosen for each of the six scenario groups A1B, A1FI, A1T, A2, B1 and B2. All should 
be considered equally sound. 
 
The SRES scenarios do not include additional climate initiatives, which means that no scenarios are included that 
explicitly assume implementation of the United Nations Framework Convention on Climate Change or the emissions 
targets of the Kyoto Protocol. 
 

 
 

                                                        
18 Emission scenarios are not assessed in this Working Group One report of the IPCC.  This box summarizing the SRES scenarios is taken from the TAR and 
has been subject to prior line by line approval by the Panel. 
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FIGURE SPM-1. Atmospheric concentrations of carbon dioxide, methane and nitrous oxide over the last 
10,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores 
(symbols with different colours for different studies) and atmospheric samples (red lines). The 
corresponding radiative forcings are shown on the right hand axes of the large panels. {Figure 6.4} 
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FIGURE SPM-2. Global-average radiative forcing (RF) estimates and ranges in 2005 for anthropogenic 
carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O) and other important agents and mechanisms, 
together with the typical geographical extent (spatial scale) of the forcing and the assessed level of 
scientific understanding (LOSU). The net anthropogenic radiative forcing and its range are also shown.  
These require summing asymmetric uncertainty estimates from the component terms, and cannot be 
obtained by simple addition.  Additional forcing factors not included here are considered to have a very 
low LOSU.  Volcanic aerosols contribute an additional natural forcing but are not included in this figure 
due to their episodic nature. Range for linear contrails does not include other possible effects of aviation on 
cloudiness. {2.9, Figure 2.20}
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FIGURE SPM-3. Observed changes in (a) global average surface temperature; (b) global average sea 
level rise from tide gauge (blue) and satellite (red) data and (c) Northern Hemisphere snow cover for 
March-April. All changes are relative to corresponding averages for the period 1961-1990. Smoothed 
curves represent decadal averaged values while circles show yearly values. The shaded areas are the 
uncertainty intervals estimated from a comprehensive analysis of known uncertainties (a and b) and from 
the time series (c).  {FAQ 3.1, Figure 1, Figure 4.2 and Figure 5.13} 
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FIGURE SPM-4. Comparison of observed continental- and global-scale changes in surface temperature 
with results simulated by climate models using natural and anthropogenic forcings. Decadal averages of 
observations are shown for the period 1906–2005 (black line) plotted against the centre of the decade and 
relative to the corresponding average for 1901–1950. Lines are dashed where spatial coverage is less than 
50%. Blue shaded bands show the 5–95% range for 19 simulations from 5 climate models using only the 
natural forcings due to solar activity and volcanoes. Red shaded bands show the 5–95% range for 58 
simulations from 14 climate models using both natural and anthropogenic forcings. {FAQ 9.2, Figure 1} 
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FIGURE SPM-5. Projected surface temperature changes for the early and late 21st century relative to the 
period 1980–1999. The central and right panels show the Atmosphere-Ocean General Circulation multi-
Model average projections for the B1 (top), A1B (middle) and A2 (bottom) SRES scenarios averaged over 
decades 2020–2029 (center) and 2090–2099 (right). The left panel shows corresponding uncertainties as 
the relative probabilities of estimated global average warming from several different AOGCM and EMICs 
studies for the same periods. Some studies present results only for a subset of the SRES scenarios, or for 
various model versions. Therefore the difference in the number of curves, shown in the left-hand panels, is 
due only to differences in the availability of results.{Figures 10.8 and 10.28}
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FIGURE SPM-6. Relative changes in precipitation (in percent) for the period 2090–2099, relative to 
1980–1999. Values are multi-model averages based on the SRES A1B scenario for December to February 
(left) and June to August (right). White areas are where less than 66% of the models agree in the sign of 
the change and stippled areas are where more than 90% of the models agree in the sign of the change. 
{Figure 10.9} 

 



Summary for Policymakers  IPCC WGI Fourth Assessment Report 

 

 

 
Page 21 of 21 

 
Figure SPM-7. Solid lines are multi-model global averages of surface warming (relative to 1980-99) for the 
scenarios A2, A1B and B1, shown as continuations of the 20th century simulations.  Shading denotes the plus/minus 
one standard deviation range of individual model annual means. The number of AOGCMs run for a given time 
period and scenario is indicated by the coloured numbers at the bottom part of the panel.  The orange line is for the 
experiment where concentrations were held constant at year 2000 values.  The gray bars at right indicate the best 
estimate (solid line within each bar) and the likely range assessed for the six SRES marker scenarios.  The 
assessment of the best estimate and likely ranges in the gray bars includes the AOGCMs in the left part of the figure, 
as well as results from a hierarchy of independent models and observational constraints (Figs. 10.4 and 10.29) 
 
[To be changed:  
Change annotation from cnstant composition to year 2000 constant concentration. 
Colour central bar in grey bars and lettering to match A2, A1B, B1 curves as appropriate. 
Drop model numbers and move to caption]. 

 
 

 


